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1 Introduction and Background

1.1 Reverse Mathematics and Its Zoo

This dissertation develops and extends the theory of strong computable reductions in reverse mathematics.

Reverse mathematics is a metamathematical program which maps out the logical landscape of mathemat-

ics by asking of a given theorem which axioms are strictly necessary to prove that theorem. Traditionally, this

cartography has been carried out by comparing a given theorem against each of several standard benchmark

collections of axioms—subsystems of second order arithmetic, to be precise—to find the weakest benchmark

subsystem capable of proving the given theorem and the strongest benchmark subsystem which can be proved

from the given theorem, with all proofs carried out over the base theory RCA0, a theory which—modulo

some technical concerns—corresponds to constructive mathematics. Quite often these two benchmarks are

the same, that is, the given theorem is logically equivalent to one of the standard benchmark subsystems

over the weak base theory. This leads to the “Big Five phenomenon” that very many theorems of ordinary

mathematics are equivalent to one of five subsystems of second-order arithmetic. Until fairly recently this

phenomenon constituted the big picture of reverse mathematics (see Simpson [22] for a standard account),

but now a growing body of research in reverse mathematics concerns itself with the relationships between

those theorems that do not fall into the Big Five pattern.

A naturally occurring example of such a theorem is Ramsey’s theorem for pairs, that theorem of combi-

natorics which states that if we color every pair of natural numbers either red or blue (i.e. partition the set of

such pairs into two subsets), there will be infinitely many numbers all pairs of which have the same color [20].

This theorem, which we denote RT2
2, has been significant in the history of reverse mathematics [21, 18]. A

“zoo” of other theorems [7] have been shown to fall outside the Big Five hierarchy at the same level, and

an ongoing program of research is to study the structure of this zoo [15]. A first step in the analysis of this

structure is to take the classical approach of reverse mathematics and to examine the theorems through the

lens of provability over the base theory RCA0. If one theorem suffices to prove another in this way, the first

is stronger than the second; if the two are not equivalent, the first is strictly stronger.

But such an analysis does not reveal the whole picture. One finds clusters of theorems which on this

account are equivalent—including clusters of equivalent theorems which have intuitively different strengths—
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and more work is required to uncover, for example, the internal structure of these clusters. In this case one

may wish to ask not only whether one theorem may be proved from another but how it may be proved. Since

we are concerned with the strength of theorems, we might ask about the strength of proofs; that is, about

the computable strength or complexity which is necessary to prove one of the theorems in our zoo from

another such theorem, given the base theory RCA0. In the last few years a model [9] has been developed to

calibrate the strength required in these proofs. In this model one asks of each proof whether it can be carried

out computably, and if so whether the computations can be strong [8], uniform [5], or both. Here strong

refers to a certain technical restriction, to be defined hereafter, on the computation involved in a proof.

This model has proven fruitful in unraveling the structure of the zoo; see for example [23, 13, 19, 1, 10, 4].

Moreover, this model has succeeded in some cases in capturing in formal terms the intuition that two logically

equal theorems represent assertions of different strengths, a success which will be repeated hereafter. The

computable relationships between theorems which are employed in this model are collectively referred to as

computable reductions, effective reductions, or strong reductions. We will favor strong reductions.

This sets the stage on which the mathematics in this dissertation will play out. We select a particular

menagerie of four theorems within the reverse mathematics zoo—to wit, certain stable versions of RT2
2—and

examine them under the lens of strong reductions. These theorems are naturally occurring in combinatorics

and are logically equivalent to one another over the base theory RCA0. Each theorem asserts the existence

of an infinite set with certain properties, and because these properties seem to describe sets of different

complexity, intuitively the theorems which assert the existence of more complex sets are stronger than those

which assert the existence of less complex sets. This intuitive complexity can be expressed in terms of

how difficult it would be to construct the set, i.e. can be expressed in terms of effectivity and constructive

proof. As a result, the framework of strong reductions aptly formalizes the intuitive distinctions between

the inhabitants of our menagerie. Hereafter we will explore which of the strong reduction relationships hold

and fail to hold between the four theorems and eventually give a complete account of the structure of the

menagerie.

1.2 Our Menagerie

We study four combinatorial principles related to Ramsey’s theorem for pairs. Let us begin with the requisite

definitions.
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Definition 1.1.

• If S ⊆ ω, then [S]2 denotes the set of all 2-element subsets of S.

• A 2-coloring of pairs is a function f : [ω]2 → 2. We hereafter write f(x, y) for f({x, y}) with x < y,

and “coloring” should be understood to mean “2-coloring of pairs.”

• A 2-coloring of pairs is stable if limu f(x, u) exists for all x ∈ ω.

Given a coloring, we are interested in the existence of sets homogeneous for the coloring in the following

senses.

Definition 1.2.

• An infinite set H ⊆ ω is homogeneous for a coloring f if f � [H]2 is constant.

• An infinite setH = HL⊕HR is polarized homogeneous or p-homogeneous for a coloring f if f � HL×HR

is constant, and is increasing p-homogeneous if f � {{x, y} : x < y, x ∈ HL, y ∈ HR} is constant.

• An infinite set H is limit homogeneous for a coloring f if g(x) =def limu f(x, u) is total and constant

on H.

With these definitions in hand, we can now introduce the menagerie of combinatorial principles in whose

relative strength we are interested. All four principles are stable variants of RT2
2. In fact the first of our

principles, which has been the subject of considerable work in reverse mathematics (see for example [2, 6, 17]),

is the stable Ramsey’s theorem for pairs, SRT2
2.

Statement 1.3 (SRT2
2: Stable Ramsey’s Theorem for pairs). For every stable 2-coloring of pairs f : [ω]2 → 2

there exists a set H homogeneous for f .

The next two principles were first studied in the context of combinatorics by Erdős and Rado in [14] and

in the context of reverse mathematics by Dzhafarov and Hirst in [11].

Statement 1.4 (SPT2
2: Stable Polarized Ramsey’s Theorem for pairs). For every stable 2-coloring of pairs

f : [ω]2 → 2 there exists a set H p-homogeneous for f .

Statement 1.5 (SIPT2
2: Stable Increasing Polarized Ramsey’s Theorem for pairs). For every stable 2-

coloring of pairs f : [ω]2 → 2 there exists a set H increasing p-homogeneous for f .
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As its conventional abbreviation suggests, the fourth principle with which we are concerned has a different

lineage from the other stable variants of Ramsey’s theorem. Rather than originating in combinatorics, the

limit Ramsey’s theorem for pairs D2
2 originates in computability theory and reverse mathematics [2, 23],

where its original statement had to do with infinite subsets of ∆0
2 sets and their complements. Since a ∆0

2

approximation can be construed as a 2-coloring of pairs, the principle in an equivalent form is a variant of

Ramsey’s theorem for pairs.

Statement 1.6 (D2
2: Limit Ramsey’s Theorem for pairs). For every stable 2-coloring of pairs f : [ω]2 → 2

there exists a set H limit homogeneous for f .

While the proof is highly nontrivial, Chong, Lempp, and Yang have shown [3] that each of these four com-

binatorial principles is equivalent to the others (and weaker than RT2
2) over RCA0: RCA0 ` D2

2 ↔ SIPT2
2 ↔

SPT2
2 ↔ SRT2

2 6→ RT2
2. Nevertheless, if we think of what it would take to construct the different kinds of

homogeneous set guaranteed by these principles, it would appear that SRT2
2 makes a constructively stronger

claim than SPT2
2, which makes a constructively stronger claim than SIPT2

2, which makes a constructively

stronger claim than D2
2. In other words, there should be some effective notion of relative strength and some

corresponding relation <effective such that

D2
2 <effective SIPT2

2 <effective SPT2
2 <effective SRT2

2.

Hereafter we will define such notions precisely and prove that strong reductions can recapture this intuition

about the relative strengths of these principles.

1.3 Π1
2 Principles and Strong Reductions

The stable versions of Ramsey’s theorem for pairs with which we are concerned, together with many of the

other theorems studied by reverse mathematics, are set existence theorems which are naturally stated in a

Π1
2 syntactic form, i.e. in the form

∀X(Φ(X)→ ∃YΨ(X,Y )),

where Φ and Ψ are arithmetical predicates. In our case Φ(X) would translate to “X is a stable 2-coloring

of pairs” in English while Ψ(X,Y ) would translate to “Y is an infinite set homogeneous (in some particular
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sense) for X.” It is helpful for our purposes to think of principles of this form as problems. Given a problem

P expressed as in the formula displayed above, we call objects X such that Φ(X) holds instances of the

problem and objects Y such that Ψ(X,Y ) holds solutions to the instance X of the problem. Given this

language, we define as in [9] the following notions of effective reducibility between two problems.

Definition 1.7. Let P and Q be problems.

• P is computably reducible to Q, written P ≤c Q, if every instance X of P computes an instance X̂ of Q

such that whenever Ŷ solves X̂, X ⊕ Ŷ computes a solution Y to X.

• P is strongly computably reducible to Q, written P ≤sc Q, if every instance X of P computes an instance

X̂ of Q such that whenever Ŷ solves X̂, Ŷ computes a solution Y to X.

• P is Weihrauch reducible to Q, written P ≤W Q, if there are Turing functionals Φ and Γ such that

whenever X is an instance of P, ΦX is an instance of Q, and whenever Ŷ solves ΦX , ΓX⊕Ŷ solves X.

• P is strongly Weihrauch reducible to Q, written P ≤sW Q, if there are Turing functionals Φ and Γ such

that whenever X is an instance of P, ΦX is an instance of Q, and whenever Ŷ solves ΦX , ΓŶ solves X.

Each of these notions is meant to capture the intuitive idea that if one has the ability to solve Q, one

may in an algorithmic way use this ability to solve P. While such ideas have been used at least implicitly

in the reverse mathematics literature for some time, they were first presented as objects of study quite

recently. Weihrauch and strong Weihrauch reducibility were introduced by Weihrauch in [24] in the context

of degrees of discontinuity, and in the context of reverse mathematics were independently discovered by

≤sc

≤sW

≤W

≤c

Figure 1. Implications between types of strong reduction. The double arrows indicate implication, e.g. if
P ≤sW Q then P ≤W Q.
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Dorais et al. [5]. Computable reducibility was developed by Dzhafarov [8]. These four notions of effective

reducibility are related as in Figure 1. No other implications hold [16].

1.4 The Structure of the Menagerie

In this dissertation we will determine which of the strong reductions introduced in Definition 1.7 hold and do

not hold between the four theorems introduced in Statements 1.3–1.6. Because a set H which is homogeneous

for a stable coloring f is also limit homogeneous for f ; and because it is easy to partition H into two infinite

subsets so that their join H ′ = HL ⊕ HR is p-homogeneous for f ; and because a set p-homogeneous for

f is also increasing p-homogeneous for f , it is easy to see that D2
2 ≤sW SIPT2

2 ≤sW SPT2
2 ≤sW SRT2

2. So

far this agrees with our intuitions about the relative strengths of these four principles. But in order to

fully capture this intuition, at least one type of reduction must fail in the other direction. This is a common

thread in the use of strong reductions in reverse mathematics: not necessarily every notion of reducibility will

separate—i.e. hold in only one direction between—two theorems, and we must find out which reduction(s)

capture the differences in complexity between the principles. Indeed, the theorems do not separate under

computable reducibility: D2
2 ≡c SIPT2

2 ≡c SPT2
2 ≡c SRT2

2. (That D2
2 ≡c SRT2

2 is proven as Lemma 3.5 in [2].

The remaining equivalences follow from the strong Weihrauch reductions indicated above together with the

following result.) Weihrauch reduction fails to separate three of the theorems, as we now prove.

Proposition 1.8. SRT2
2 ≤W SPT2

2 ≤W SIPT2
2.

We will use the following lemma to prove Proposition 1.8.

Lemma 1.9. Fix i < 2. There is a Turing functional Φ such that if f : [ω]2 → 2 is a stable 2-coloring of

pairs and L is an infinite set limit homogeneous for f with color i, then Φf⊕L⊕{i} describes an infinite set

H homogeneous for f .

Proof of Lemma 1.9. Fix f and L. We may compute from f ⊕ L ⊕ {i} an infinite set H = {h0, h1, h2, . . . }

homogeneous for f as follows. Let h0 be the least element of L, h1 the least element of L such that {h0, h1}

is finite homogeneous for f with color i, and hk+1 the least element of L such that {h0, h1, . . . , hk} is finite

homogeneous for f with color i. The stability of f and the fact that L is limit homogeneous for f with color

i imply that this enumeration is computable from f , L, and i; this together with the ordering of enumeration

implies that H is computable in the given data.
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Proof of Proposition 1.8. Fix a stable 2-coloring of pairs f : [ω]2 → 2 and an infinite set I = I0⊕I1 increasing

p-homogeneous for f . Let i0 be the least element of I0 and i1 the least element of I1 such that i0 < i1.

Because f is stable and I is increasing p-homogeneous for f , I0 is limit homogeneous for f with color f(i0, i1).

Since f(i0, i1) and I0 are computable from f⊕I, by the lemma f⊕I computes an infinite set H homogeneous

for f , hence the infinite set H ⊕H p-homogeneous for f .

By contrast to Proposition 1.8, Dzhafarov [9] showed that SRT2
2 6≤W D2

2 and SRT2
2 6≤sc D2

2. We strengthen

the latter result by replacing SRT2
2 with SIPT2

2 as follows.

Theorem 1.10. SIPT2
2 6≤sc D2

2.

This follows by a straightforward adaptation of the proof of Corollary 3.6 in [9], but in addition to that

proof we provide the following much simpler one.

Proof of Theorem 1.10. We will choose f : [ω]2 → 2 be a non-computable instance of SIPT2
2 all of whose

solutions compute ∅′. To that end, fix a c.e. approximation of ∅′, {Xs}s∈ω, with least modulus µ. Now

define

f(x, y) =


0, if y − x ≤ max{µ(z) : z ≤ x};

1, otherwise.

Then limu f(x, u) = 1 for all x ∈ ω. LetH = HL⊕HR be any solution to f (soH is increasing p-homogeneous

for f with color 1). Then if z ∈ ω, we can compute from H whether z ∈ ∅′ as follows: find the least x ∈ HL

with z ≤ x, and the least y > x with y ∈ HR. Since f(x, y) = 1, y − x > µ(z). Thus z ∈ ∅′ if and only if

z ∈ Xy−x.

So every solution to f computes ∅′. But every instance of D2
2—in particular, every instance computable

from f—has a solution which does not compute ∅′ (Theorem 3.5, [12]), hence does not compute any infinite

set increasing p-homogeneous for f .

In order to complete the task of mapping out all of the strong reductions which hold or do not hold between

the four theorems in our menagerie, it remains to settle whether SRT2
2, SPT2

2 and SIPT2
2 are equivalent under

strong Weihrauch or strong computable reduction. In fact they are not, and hereafter we will prove the

following two theorems.

Theorem 1.11 (First Main Theorem). SRT2
2 6≤sc SPT2

2.
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Theorem 1.12 (Second Main Theorem). SPT2
2 6≤sc SIPT2

2.

Thus it is the strong computable or Weihrauch definitions of reducibility which suffice to separate the

theorems in our menagerie and to capture our intuitions about their relative strength: SRT2
2 6≤sc SPT2

2 6≤sc

SIPT2
2 6≤sc D2

2 and D2
2 ≤sW SIPT2

2 ≤sW SPT2
2 ≤sW SRT2

2.
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2 Tree Labeling and Forcing

In this section we will outline and formalize some techniques which will be used in the proofs of both of the

main theorems.

2.1 Tree Labeling

To prove the main theorems we will use a pair of tree labeling arguments. The tree labeling method was first

introduced by Dzhafarov in [9] to prove that COH 6≤sc SRT2
2, and has since been used by Dzhafarov, Patey,

Solomon, and Westrick in [13] to prove that COH 6≤sc SRT2
<∞ and that, for k > l, RT1

k 6≤sc SRT2
l .

The idea behind this proof technique is as follows. Suppose we have a Turing functional Φ, a finite set

F , and an infinite reservoir R ⊆ ω such that F < R (meaning that every element of R is greater than every

element of F ), and suppose we wish to extend F to F ∪ F0 where F0 ⊆ R is a finite set of elements taken

from R with property that ΦF∪F0(a) ↓= 1 while ΦF (a) ↑. In other words, we wish to extend the finite set

F to a larger finite set, drawing from the given reservoir, such that F so extended is oracle enough for Φ to

converge on one new input. In the tree labeling construction, we consider the branching process of extending

F by any one element from R, then by one more element from R, and so on. We represent these possible

ways of extending F by adding different elements of R as an infinitely branching tree. The rule by which

we produce this tree—call it T—is that ∅ ∈ T and that a nonempty string α ∈ R<ω belongs to T just in

case α is increasing and there is no finite set F0 ⊆ ran (α � |α| − 1) with the property that ΦF∪F0(a) ↓= 1

while ΦF (a) ↑. Notice that the preceding property is asserted for F0 contained in the range not of α but

of α minus its last element. In this way we ensure that any well-founded path p through T will terminate

precisely when there is F0 ⊆ ran(p) such that ΦF∪F0 converges on one new input. We introduce a labeling

scheme by which every terminal node of the tree bears a label, namely that one new input (or the least such,

in case there is more than one way to choose F0 ⊆ ran(p) each leading to convergence on a different new

input). This labeling scheme then propagates these labels recursively back down the tree from leaf to root.

A tree labeling argument thus reduces the process of searching for a way to extend a finite set to produce

convergence of a functional on one new element to a process of searching through an infinitely branching

tree. If we require additional constraints to hold about the way we extend the given finite set, this translates

to additional constraints on the way we search for a suitable branch of the tree. The labels attached to the

9



nodes of the tree will usefully guide such searches.

2.2 Formalizing a New Approach

The forgoing outline describes the tree labeling method used in earlier papers. The proofs here will require

elaborations on previous methods. It is possible to alter the technique such that the extensions of the given

finite set lead not to just one new convergence but to any desired finite number of new convergences. Our

proofs of the main theorems will require, depending on the case, convergence on two or three new inputs

so that these new inputs can be used in the more complicated diagonalization requirements of these proofs.

This requirement necessitates, among other changes, that we replace the labeling scheme used in previous

tree labeling arguments with a new one suitable to any finite number of labels. For simplicity, we will define

the construction for a tree with 2 labels; the definitions required to construct a tree with 3 labels will then be

clear, as the definitions for the 2-label case will apply mutatis mutandis. In that regard, we call the reader’s

attention particularly to Remark 2.8. Additional changes to the construction will be made to account for

the fact that we wish to use this method specifically to construct p-homogeneous sets. In order to simplify

the exposition, we begin with the following definitions.

Definition 2.1.

• If α is a nonempty string of natural numbers, then α# denotes α � |α| − 1.

• If α and β are strings of natural numbers, then α ∗ β denotes α concatenated by β.

• If α is a string of natural numbers and x ∈ ω, then α ∗ x denotes α ∗ 〈x〉.

• If α, α ∗ x ∈ T for some tree T , we say that α ∗ x is a successor of α in T .

• If A,B ⊆ ω, as above we write A < B if every element of A is less than every element of B.

We now proceed to define tree labeling with two labels. The choice of letter names is somewhat prescient:

when we apply this method of proof, many of the same letter names will appear.

Definition 2.2. Let H ⊂ ω be finite and I ⊂ ω be infinite, with H < I. Let Γ be a Turing functional.

Finally, let k ∈ ω. We define the tree T (k,Γ, H, I) ⊆ I<ω by ∅ ∈ T (k,Γ, H, I) and for a nonempty string α,

10



α ∈ T (k,Γ, H, I) if α ∈ I<ω is increasing and there are no finite FL, FR ⊆ ran(α#) and no b > a ≥ k such

that

ΓH∪(FL⊕FR)(a) ↓= ΓH∪(FL⊕FR)(b) ↓= 1.

In the tree labeling arguments we later make, H will represent an initial segment of a p-homogeneous set

that has been built by some stage of the construction, while FL and FR will represent possible additions to

be made to the left and right columns, respectively, of that set. Then the tree T (k,Γ, H, I) will represent,

as explained above, the branching possible ways by which we can extend H to H ∪ (FL ⊕ FR). The number

k will be chosen so that a and b are large enough to be unencumbered by certain commitments we will have

made in the forcing conditions in our construction.

Remark 2.3. T = T (k,Γ, H, I) has the following three properties:

• If T is not well-founded and p is any infinite path through T , then ran(p) ⊆ I is infinite and for all

FL, FR ⊆ ran(p) and all b > a ≥ k,

ΓH∪(FL⊕FR)(a) ' 0 or ΓH∪(FL⊕FR)(b) ' 0.

• If α ∈ T , then if α is not terminal and ran(α) < x ∈ I, α ∗ x ∈ T .

• If α ∈ T is terminal, then

ΓH∪(FL⊕FR)(a) ↓= ΓH∪(FL⊕FR)(b) ↓= 1

for some FL, FR ⊆ ran(α) and some b > a ≥ k.

We now define the labeling scheme by which we record at each node of the tree the information we need

to search through the tree in the proofs of the main theorems.

Definition 2.4. When T = T (k,Γ, H, I) is well-founded, we label the nodes of T recursively, starting at the

terminal nodes. Each node is labeled with an ordered pair whose elements may be natural numbers or the

symbol ∞.

• If α ∈ T is terminal, we label α with the least (in the lexical sense) pair 〈a, b〉 of elements b > a ≥ k

such that

ΓH∪(FL⊕FR)(a) ↓= ΓH∪(FL⊕FR)(b) ↓= 1

11



for some FL, FR ⊆ ran(α).

• If α ∈ T is not terminal, then we determine the label of α starting with the second element as follows:

◦ If there is any b ∈ ω such that infinitely many of the successors of α have labels with second

element b, then we let the least such b be the second element of the label of α. Otherwise, we let

∞ be the second element of the label of α.

◦ Now suppose the second element b of the label of α has been determined already; we will determine

its first element a according as b ∈ ω or b =∞. If b =∞, then we let a be the least finite number

appearing as the first element of the label of infinitely many successors of α, or else if there is no

such finite number we let a =∞. If b ∈ ω, we restrict our attention to just those successors of α

whose labels’ second element is b, and let a be the least number appearing as the first element of

the label of infinitely many successors of α. Observe that a < b.

Remark 2.5. Note that in this labeling scheme no label which has the symbol ∞ as its first element has a

finite number as its second.

Definition 2.6. Suppose T = T (k,Γ, H, I) is well-founded. Then the labeled subtree TL = TL(k,Γ, H, I) of

T is obtained from T as follows. First, the root node of T (namely ∅) is added to TL. Now suppose we have

added to TL some non-terminal node α of T . We then add to TL some of the successors of α, thus:

• If α has label 〈a, b〉 ∈ ω2 in T , then we add to TL all those successors of α with the same label.

• If α has label 〈a,∞〉 for some a ∈ ω in T , then if infinitely many successors of α have label 〈a, b〉 ∈ ω2,

then for each b ∈ ω such that 〈a, b〉 appears as the label of a successor of α, we select the least x such

that α ∗ x has that label and add α ∗ x to TL; and if on the other hand cofinitely many successors of

α have the same label (namely 〈a,∞〉), we add all such successors to TL.

• Otherwise, if α has label 〈∞,∞〉, then if infinitely many successors of α have label 〈a, b〉 ∈ ω2, then

for each such pair that appears as the label of a successor of α, we select the least x such that α ∗ x

has that label and add α ∗ x to TL; and if cofinitely many successors of α have label 〈a,∞〉 for a ∈ ω,

then for each a ∈ ω such that 〈a,∞〉 appears as the label of a successor of α, we select the least x such

that α ∗ x has that label and add α ∗ x to TL; and otherwise if cofinitely many successors of α have

label 〈∞,∞〉, we add those successors to TL.

12



All the nodes of TL retain the labels they had as nodes of T . Note that every node terminal in T is also

terminal in TL, and that every non-terminal node in both T and TL has infinitely many successors.

Definition 2.7. A node α ∈ TL is called a transition node if the symbol ∞ appears in the label of α, and

appears strictly fewer times and no more than once in the label of each successor of α.

Remark 2.8 (Tailoring Definition 2.7 for the case of 3 labels.). The use of the words “and no more than

once” in the preceding definition may appear peculiar. This way of stating the definition is necessary in

order to live up to our earlier promise that every definition for tree labeling with 2 labels would adapt

straightforwardly to tree labeling with 3 labels. By wording the definition of transition node in this way, we

are able to use the same definition for both the 2-label and the 3-label case.

2.3 A Notion of Forcing

In the proofs that follow we will use the following notion of forcing.

Definition 2.9. Let C denote the following notion of forcing. A condition is an ordered triple p = 〈σp, lp, |p|〉

where |p| ∈ ω, σp : [|p|]2 → 2, lp : |p| → 2× ω, and lp(x) = 〈i, z〉 implies that if σp(x, y) is defined and y ≥ z

then σp(x, y) = i.

From any sufficiently generic filter G for C we obtain a stable 2-coloring of pairs f =
⋃
p∈G σ

p : [ω]2 → 2

together with a function l =
⋃
p∈G l

p : ω → 2×ω such that for each x ∈ ω, limu f(x, u) = (l(x))0. Thus |p| is

an initial segment of ω on which we define a partial 2-coloring of pairs σp together with some commitments

lp about σp intended to ensure that we build a stable 2-coloring of pairs. That is, lp(x) = 〈i, z〉 is intended

to represent the commitment that σp(x, y) will stabilize to color i ∈ 2 for y ≥ z.

We have need of the following genericity lemma.

Lemma 2.10. If p0 ≥ p1 ≥ p2 ≥ · · · is a sequence of C-conditions which is 3-generic relative to some set

P ⊆ ω, and if f =
⋃
s σ

ps : [ω]2 → 2, then f ⊕ P does not compute a homogeneous or a p-homogeneous set

for f .

Proof. First observe that if f⊕P were to compute a p-homogeneous set for f , then from that set together with

f one could compute a homogeneous set for f . Hence we need only prove that under the given hypotheses

f ⊕ P does not compute a homogeneous set for f .
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Fix P ⊆ ω such that p0 ≥ p1 ≥ p2 ≥ · · · is 3-generic with respect to P and fix a Turing functional Γ.

Let WP,Γ be the set of all conditions p which force one of the following two statements:

(a) Γf⊕P does not define an infinite set;

(b) there are x, y ∈ ω with Γf⊕P (x) ↓= Γf⊕P (y) ↓= 1 and limu f(x, u) 6= limu f(y, u).

WP,Γ is Σ0
3-definable in P , and we claim that WP,Γ is dense in C. To see this, let p be any condition none

of whose extensions force (a), and suppose by way of contradiction that no extension of p forces (b). This

means that for every x, y ∈ ω, if q ≤ p then q does not force both that limu f(x, u) 6= limu f(y, u) and that

Γf⊕P (x) ↓= Γf⊕P (y) ↓= 1. Then in particular there are no x, y ≥ |p|, τ extending σp, and L extending lp

such that
(1) τ respects L;

(2) Γτ⊕P �|p|(x) ↓= Γτ⊕P �|p|(y) ↓= 1; and

(3) (L(x))0 6= (L(y))0.

Now if there is no such x, y, τ, L satisfying (1) and (2), then p forces that Γf⊕P does not define an infinite

set, which is a contradiction. Therefore there are x, y, τ, L satisfying (1) and (2). But (3) is independent of

(1) and (2); given x, y, τ satisfying (1) and (2) we may find L extending lp and compatible with τ such that

(L(x))0 6= (L(y))0. We conclude that W is dense in C.
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3 Separating SRT2
2 and SPT2

2

In this section we will prove the following theorem, which has the First Main Theorem as its corollary.

Theorem 3.1. There exists a stable 2-coloring of pairs f : [ω]2 → 2 and a family Y of infinite sets such

that no (f ⊕ P )-computable set is homogeneous for f for any P ∈ Y , and every stable 2-coloring of pairs

f ′ : [ω]2 → 2 computable from f has either an (f ⊕ P )-computable p-homogeneous set for some P ∈ Y , or

if not then some p-homogeneous set which does not compute a set homogeneous for f .

Before proving Theorem 3.1, we observe how the First Main Theorem is a direct consequence. Let f and

Y be as in the statement of Theorem 3.1, let Φ,Ψ be any Turing functionals, and suppose that Φf is a stable

2-coloring of pairs. Let H be set p-homogeneous for Φf . Then by Theorem 3.1, ΨH is not homogeneous for

f . Thus SRT2
2 6≤sc SPT2

2.

Proof of Theorem 3.1. We build

• a sequence of C-conditions p0 ≥ p1 ≥ p2 ≥ · · · with lims |ps| =∞;

• sequences of finite sets (initial segments of p-homogeneous sets) HΦ
j,0 ⊆ HΦ

j,1 ⊆ HΦ
j,2 ⊆ · · · for each

Turing functional Φ and each j < 2;

• a sequence of infinite sets (reservoirs) I0 ⊇ I1 ⊇ I2 ⊇ · · · with HΦ
j,s < Is for each Φ, j, s;

• a sequence of finite families Y0 ⊆ Y1 ⊆ Y2 ⊆ · · · of infinite subsets of ω;

and we define f =
⋃
s σ

ps , HΦ
j =

⋃
sH

Φ
j,s for each j < 2, and Y =

⋃
s Ys. The construction will ensure the

following requirements, for all i ∈ ω and Turing functionals Φ,Γ,∆:

Pi : the sequence p0 ≥ p1 ≥ p2 ≥ · · · is 3-generic relative to each P ∈ Yi;

QΦ,i : if Φf is a stable 2-coloring of pairs, it either has an (f ⊕ P )-computable

p-homogeneous set for some P ∈ Y or else both HΦ
0 and HΦ

1 are infinite

in both columns (in other words, given our encoding of p-homogeneous

sets, contain infinitely many even and infinitely many odd numbers);
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RΦ
Γ,∆ : if Φf is a stable 2-coloring of pairs, it either has an (f ⊕ P )-computable

p-homogeneous set for some P ∈ Y ; or else if ΓHΦ
0 defines an infinite set

then this set is not homogeneous for f ; or else if ∆HΦ
1 defines an infinite

set then this set is not homogeneous for f .

By way of explaining the Q and R requirements, note that by Lemma 2.10, if there is any sequence

satisfying the P requirements and such that for some P ∈ Y f ⊕ P computes a set p-homogeneous for Φf ,

there will then be a set which is p-homogeneous for Φf but which computes no set homogeneous for f .

3.1 Outline of the Construction

We are about to begin a very involved forcing argument. Cases and subcases will multiply, and so it will be

helpful to first consider an informal outline of the process. We are setting out to prove that SRT2
2 6≤sc SPT2

2

and while per the statement of Theorem 3.1 the technical details are somewhat more complicated, in essence

we wish to produce a stable 2-coloring of pairs f and for each Turing functional Φ such that Φf is also a stable

2-coloring of pairs a set H that is p-homogeneous for Φf but which does not compute any set homogeneous

for f . In the language of problems explained in the introduction, our goal is to produce an instance f of

SRT2
2 such that any instance Φf of SPT2

2 has a solution H which does not compute any solution to f . To

accomplish this in stages, we extend f over longer and longer initial segments of ω while, at the same time

and for each Φ, enlarging the finite approximation of H (more precisely, H0 for color 0 and H1 for color

1) by successive finite extensions. Really we are performing two forcing constructions in parallel: Cohen

forcing for the coloring and—though we will not dress it up as such—Mathias forcing via tree labeling for

the p-homogeneous sets.

The work of finding the correct extensions for successive finite approximations to the p-homogeneous

sets (which appears in the proof as the work to satisfy the R requirements) will be accomplished using

tree labeling constructions. Assuming for the purpose of this outline that the labeled subtree at a given

stage is well-founded, we will search for a branch of the tree with the property that its range contains an

appropriate finite set by which to extend the approximation of the p-homogeneous set under consideration.

But there is an important twist here which has been absent in previous tree labeling proofs: the search

through the original labeled subtree may fail to find an appropriate extension for one of the p-homogeneous

sets at the given stage, but when it does so the information gained from that very failure ensures that a
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new, more elaborate tree labeling construction must succeed in extending the p-homogeneous set of the other

color at the given stage. It is here that we leverage the combinatorial differences between homogeneous and

p-homogeneous sets, and doing so will require us to label the trees with 3 labels rather than 2 as in the

simpler case.

This and other concerns result in a branching logical structure to the proof, where cases beget subcases

and subsubcases. There will be a Case I for when the first tree labeling construction succeeds and a Case

II for when the first tree labeling construction fails and another is required. Then, under Case I or Case II,

there are different concerns depending on whether we are, at a given step of the search through the labeled

subtree, looking at a transition node or a non-transition node, as defined in Definition 2.7. The work to

be done at non-transition nodes is straightforward, while at transition nodes the work divides further into

cases depending on precisely which kind of transition node occurs. In one of these transition node cases,

there will be an additional division into subcases based on some technical details of the tree labeling scheme.

Because of the branching logical structure of the proof the mathematical notation will necessarily become

somewhat complicated. In order to improve its readability, therefore, we abide by the following conventions.

Careful attention to these conventions will allow the reader to keep track of the various moving parts of the

construction.

Remark 3.2 (Notational Conventions).

• We will use lowercase Greek letters to denote strings in the labeled subtree in any given tree labeling

construction.

• We will use the letters a, b, and where necessary c to denote the components of labels in the labeled

subtree, and distinguish between the same component from another label using subscripts or other

notations. Thus ai and aj would be two numbers each of which shows up as the first component in

the label of some string in the labeled subtree. Additionally, we will always have a < b < c.

• We will use the letters x, y, and z to denote elements in the range of strings in the labeled subtree,

and specifically to denote elements by which a string may be extended to one of its successors in the

labeled subtree. Thus if α is a string in the labeled subtree, we may write α ∗ x to denote a successor

of α in the labeled subtree. Additionally, we will always have x < y < z.
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• Sometimes we will need to talk about the labels of the successors of a string α in the labeled subtree

at the same time as we talk about the elements x by which α may be extended to its successors. At

those times it will be convenient to associate the label 〈a, b〉 of α ∗ x with the element x and to record

this relationship by writing the label of α ∗ x as 〈ax, bx〉. In those cases where we are using 3 labels

instead of two, we will similarly write the label of α ∗ x as 〈ax, bx, cx〉.

• When, following the conventions for letter names described above, we quantify over x (or a, etc.), and

wish at the same time to speak about a particular value of x, we will affix an asterisk to the letter

name. Thus we may for example search among all the successors α ∗ x of α in the labeled subtree

to find a particular successor α ∗ x∗, or fix a number a∗ and look at all possible numbers b such that

〈a∗, b〉 appears as the label of a string in some subset of the labeled subtree. In every case, a superscript

asterisk denotes a particularized value, whether a fixed choice or the object of a search.

• We will use the letters p, q, and r to name forcing conditions.

• We will write a set formed as the join of two other sets as H = HL ⊕HR. We will refer to HL as the

left and HR as the right column of H.

• When building a homogeneous or p-homogeneous set, we will record the color i ∈ 2 in the subscript.

Thus Hi is a homogeneous or p-homogeneous set of color i. In the context of tuples, the subscripts 0

and 1 will be used in the usual way. That is, the function (t)0 returns the 0th component of t and the

function (t)1 returns the 1st component of t.

3.2 Construction

Devote infinitely many stages s ∈ ω to each requirement. Let p0 be any condition with |p0| = 0. For each Φ

let HΦ
0,0 = HΦ

1,0 = ∅, and let I0 = ω and Y0 = ∅. At stage s+ 1 assume by way of induction that we have ps,

HΦ
j,s for j < 2 and all Φ, Is, and Ys and assume that if HΦ

j,s is nonempty for some j and Φ, then ps forces

that Φf is a stable coloring of pairs and that Φf (x, y) = j whenever 2x, 2y + 1 ∈ HΦ
j,s or when y ∈ Is and

either 2x ∈ HΦ
j,s or 2x + 1 ∈ HΦ

j,s. At the end of a stage any of ps+1, HΦ
j,s+1, Is+1, or Ys+1 not yet defined

should be taken to be identical to ps, HΦ
j,s, Is, or Ys, respectively.
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P requirements

Suppose s is dedicated to requirement Pi for some i < s and that it is the 〈n,m〉th such stage. If n > |Yi|

do nothing. Otherwise, let P be the nth member of the family Yi in some fixed enumeration and let W be

the mth Σ0
3(P ) set in some fixed enumeration. If ps has an extension q in W , fix q and let ps+1 = q, so that

p0 ≥ p1 ≥ · · · ≥ ps ≥ ps+1 ≥ · · · meets W . Otherwise, do nothing, and p0 ≥ p1 ≥ · · · ≥ ps ≥ ps+1 ≥ · · ·

avoids W .

Q requirements

Suppose s is dedicated to QΦ,i. Without loss of generality we assume that ps decides whether or not Φf is

a stable 2-coloring of pairs. If ps forces that Φf is not such a coloring, do nothing. Otherwise, we consider

two cases.

• If for some j < 2 and k ∈ ω there is no extension of ps which forces that limu Φf (x, u) = j for some

x ≥ k in Is, then P = {x ∈ Is : x ≥ k} is limit homogeneous for Φf with color 1 − j, and so (f ⊕ P )

computes a set p-homogeneous for Φf . We set Ys+1 = Ys ∪ {P}. This satisfies the requirement (since,

as remarked earlier, this means there is a set which is p-homogeneous for Φf but which computes no

set homogeneous for f).

• If no such j, k exist, then there are numbers x00, x01, x10, x11 ∈ Is and an extension of ps forcing that

HΦ
j,s ∪ {2xj0, 2xj1 + 1} is finite p-homogeneous for Φf and limu Φf (xji, u) = j for each i, j < 2. In this

case let ps+1 be such an extension of ps, let HΦ
j,s+1 = HΦ

j,s ∪ {2xj0, 2xj1 + 1}, and let Is+1 = {x : m <

x ∈ Is} where m is greater than the stabilization points under Φf of every element of HΦ
0,s+1 ∪HΦ

1,s+1.

Observe that both columns have been extended by one element.

R requirements

Suppose s is dedicated to RΦ
Γ,∆ and assume that ps forces that Φf is a stable coloring of pairs. The goal

of this requirement is to extend by some finite set either the initial segment of HΦ
0 (Case I) or the initial

segment of HΦ
1 (Case II) that we have constructed so far, subject to the following condition: if we extend

HΦ
0 , then Γ does not compute a homogeneous set for f from any further extension of HΦ

0 ; and if on the
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other hand we extend HΦ
1 , then ∆ does not compute a homogeneous set for f from any further extension of

HΦ
1 . When we have so extended one of HΦ

0 , H
Φ
1 , we will say that we have successfully diagonalized against

such computations.

We intend to accomplish this diagonalization in the following way. There will be two numbers, say a and

b, and two finite sets FL and FR, all arising from a tree labeling construction, about which we know either

that

ΓH
Φ
0 ∪(FL⊕FR)(a) ↓= ΓH

Φ
0 ∪(FL⊕FR)(b) ↓= 1

or else that

∆HΦ
1 ∪(FL⊕FR)(a) ↓= ∆HΦ

1 ∪(FL⊕FR)(b) ↓= 1.

Let us suppose we know the first. In other words, we know that if we extend HΦ
0 by FL ⊕ FR, then the

set computed from HΦ
0 ∪ (FL ⊕ FR) by Γ will contain a and b. Thus to diagonalize—i.e. to ensure that

the set so computed is not homogeneous for f—we will choose an extension q of the condition ps such that

σq(a, b), (lq(a))0, and (lq(b))0 are not all equal. This will guarantee that no set containing both a and b is

homogeneous for the coloring eventually obtained by extending σq. The tension of the proof arises from the

fact that, while diagonalizing in this way, we also need q to force that elements of FL and FR have the right

limits under Φf so that HΦ
0 ∪ (FL ⊕ FR) can in fact be extended to a p-homogeneous set.

Case I (Extending HΦ
0 )

Let T0 = T (|ps|,Γ, HΦ
0,s, Is). If T0 is not well-founded then let Is+1 be the range of an infinite path through

T0. Observe that in this case the requirement is satisfied. If T0 is well-founded, then let TL0 be the labeled

subtree of T0.

We now try to define two sequences, conditions

ps ≥ q0 ≥ q1 ≥ q2 ≥ · · ·

and nodes of TL0
∅ = α0 � α1 � α2 � · · ·
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where for all j ≥ 0, αj+1 is a successor of αj and for all j ≥ 0 the condition qj forces that

lim
u

Φf (x, u) = 0

for all x ∈ ran(αj). We begin the definition of these sequences as follows.

• If ∅ = α0 has label 〈a, b〉 with a, b ∈ ω, let q0 be any extension of ps having σq0(a, b), (lq0(a))0, and

(lq0(b))0 not all equal. In this case the diagonalization for the present requirement is now complete.

• Otherwise, let q0 = ps.

We then proceed by induction until either the induction fails and we satisfy the requirement by adding

a certain set P to Y , or else the induction always succeeds at every non-terminal node. In the latter case,

once we reach a terminal node we will be ready to diagonalize. Suppose we have defined qn and αn and that

the latter is not terminal in TL0 . Recall that qn forces that there is some m ∈ ω such that Φf (x, y) = 0 for

x ∈ ran(αn) and y ≥ m. Let S = S(n) be the set of all successors αn ∗ x of αn with x ≥ m. The induction

breaks into cases according as αn is or is not a transition node. At the first suitable transition node, we set

up to diagonalize.

Case I.1 (Non-Transition Node)

If αn is not a transition node, let P = {x : αn ∗ x ∈ S}. We look for an x∗ ∈ P and an extension q of qn

which forces that

lim
u

Φf (x∗, u) = 0.

If we find such, we let qn+1 = q and we let αn+1 be any β ∈ S with β(n) = x∗; if we find no such, then P is

limit-homogeneous for Φf and thus f ⊕ P computes a p-homogeneous set for Φf (for example, we can thin

P computably in f to a set G homogeneous for Φf ; then G⊕G is p-homogeneous for Φf ). In this case we

set Ys+1 = Ys ∪ {P} and ps+1 = qn, satisfying the requirement and ending stage s.

Case I.2 (Transition Node)

If αn is a transition node, the induction breaks into two cases. The header for each case gives a shorthand

for the sort of transition being discussed. For example, where we write 〈∞,∞〉 → 〈a,∞〉 we mean that the
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node αn under consideration has label 〈∞,∞〉 while every successor of αn has a label in which the symbol

∞ appears exactly once.

Case I.2.1 (〈∞,∞〉 → 〈a,∞〉)

If αn has label 〈∞,∞〉 and every successor of αn has a label in which the symbol ∞ appears exactly once,

then we proceed as in the non-transition case.

Case I.2.2 (〈∞,∞〉 → 〈a, b〉 or 〈a,∞〉 → 〈a, b〉)

If αn has a label in which the symbol∞ appears but every successor of αn is labeled only with finite numbers,

then let

P = {〈x, a, b〉 : αn ∗ x ∈ S and αn ∗ x has label 〈a, b〉 and b > |qn|}.

The idea behind the restriction that b > |qn| in the definition of P above is that we wish each b to be greater

than all the numbers about which qn has already made commitments. In particular, we wish to be free to

determine for each b (lq(b))0 in an extension q of qn. We look for a tuple 〈x∗, a∗, b∗〉 ∈ P and an extension q

of qn which forces that

lim
u

Φf (x∗, u) = 0

and is such that σq(a∗, b∗), (lq(a∗))0, and (lq(b∗))0 are not all equal. If we find such an extension q of qn,

we let qn+1 = q and we let αn+1 be any β ∈ S with β(n) = x∗ having label 〈a∗, b∗〉. Then, as αn+1 is not

a transition node, we return to Case I.1. But it may be the case that there is no such extension. In that

case we use information gleaned from the failure to find such an extension and use this information to refine

the reservoir Is, and we then jettison the tree TL0 currently in use and switch from trying to extend HΦ
0 to

trying to extend HΦ
1 .

We record the information gleaned from the failure case and update the reservoir as follows. Fix Q ⊆ P

to be a set of triples 〈x, ax, bx〉 such that {(x, bx) : 〈x, ax, bx〉 ∈ Q} is a one-to-one function with infinite

domain and range. A set Q matching these specifications must exist by the definition of the tree labeling

scheme and the particular kind of transition node under consideration. We then redefine the reservoir Is to

be {x : ∃ax, bx (〈x, ax, bx〉 ∈ Q}. We are now finished with this subcase and will begin a new tree labeling

construction in Case II.
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Case II (Extending HΦ
1 )

This is the case we are in after having already attempted to proceed as in Case I, but having failed as

described above in Case I.2.2. Thus we begin the present case with considerable information, and this will

allow us to perform a tree labeling construction similar to the one in Case I but with no possibility of failure.

Recall that we have assumed that ps (and hence qn) forces that Φf is a stable 2-coloring of pairs, and recall

that Case I.2.2 above failed because we could not find a tuple 〈x∗, a∗, b∗〉 ∈ P and an extension q of qn which

forces that limu Φf (x∗, u) = 0 and is such that σq(a∗, b∗), (lq(a∗))0, and (lq(b∗))0 are not all equal. This

means, given the definitions above of Q and the revised reservoir Is, that for any x ∈ Is and any extension

q of qn such that σq(a∗, b∗), (lq(a∗))0, and (lq(b∗))0 are not all equal q forces that limu Φf (x∗, u) = 1. In

the tree labeling construction which follows, we will extend qn several times. As we gradually extend the

forcing condition, for any given x it might occur—and we may as well assume—that the limiting color of ax

will be forced, and that the stabilization point will fall below bx so that the color of (ax, bx) will be forced

also. However, since there are infinitely many different numbers bx, by restricting our attention to those x’s

for which the limiting color of bx has not yet been forced, we will always have the option of choosing an

extension q as above, i.e. such that σq(ax, bx), (lq(ax))0, and (lq(bx))0 are not all equal, and thus force that

limu Φf (x, u) = 1. The fact that we can always accomplish this while making progress toward satisfying

the present requirement underlies the remainder of the construction, and so we find it useful to define the

following terms.

Definition 3.3. With Q and Is as above, we define the function button : Is → ω as follows. For any x ∈ Is,

there is a unique tuple 〈x, ax, bx〉 ∈ Q. Let button(x) = bx.

Definition 3.4. With Q, Is, and qn as above and for any 〈x, ax, bx〉 ∈ Q, a forcing extension q of qn is said

to press the button of x or to press button(x) if σq(ax, bx), (lq(ax))0, and (lq(bx))0 are not all equal.

Thus any forcing extension which presses the button of x forces that limu Φf (x, u) = 1.

As promised, for this case we need to modify our definition of tree labeling. We will use tree labeling with

three labels. The definition of T (k,Γ, H, I) is for this case changed to the following: ∅ ∈ T (k,Γ, H, I) and

for a nonempty string α, α ∈ T (k,Γ, H, I) if α ∈ I<ω is increasing and there are no finite FL, FR ⊆ ran(α#)
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and no c > b > a ≥ k such that

ΓH∪(FL⊕FR)(a) ↓= ΓH∪(FL⊕FR)(b) ↓= ΓH∪(FL⊕FR)(c) ↓= 1.

The method for labeling the nodes of T (k,Γ, H, I) extends the method from tree labeling with two labels in

the natural way, as does the method for selecting the nodes of the labeled subtree TL(k,Γ, H, I). Remark 2.3

applies mutatis mutandis.

Now we begin a new tree labeling construction starting where we left off when Case I.2.2 failed. Thus

we have the forcing condition qn ≤ ps and the revised reservoir Is.

Remark 3.5. Our notation will be slightly more manageable if we allow ourselves to reuse the letter n

rather than reserving n as the index of qn, the forcing condition at which we ended Case I.2.2. Thus we will

write q for that forcing condition hereafter.

Let T1 = T (|q|,∆, HΦ
1,s, Is). If T1 is not well founded then let Is+1 be the range of an infinite path through

T1. Observe that in this case the requirement is satisfied. If T1 is well founded, let TL1 be the labeled subtree

of T1.

We now try to define two sequences, conditions

q ≥ r0 ≥ r1 ≥ r2 ≥ · · ·

and nodes of TL1
∅ = α0 � α1 � α2 � · · ·

where for all j ≥ 0, αj+1 is a successor of αj and for all j ≥ 0 the condition rj forces that

lim
u

Φf (x, u) = 1

for all x ∈ ran(αj). We begin the definition of these sequences as follows.

• If ∅ = α0 has label 〈a, b, c〉 with a, b, c ∈ ω, let r0 be any extension of q having σr0(a, b), (lr0(a))0, and

(lr0(b))0 not all equal.
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• If ∅ = α0 has label 〈a, b,∞〉 with a, b ∈ ω, let r0 be any extension of q having σr0(a, b), (lr0(a))0, and

(lr0(b))0 not all equal.

• Otherwise, let q0 = q.

We then proceed by induction. Suppose we have defined rn and αn and that the latter is not terminal in

TL1 . Recall that rn forces that there is some m ∈ ω such that Φf (x, y) = 1 for x ∈ ran(αn) and y ≥ m. Let

S be the set of all successors αn ∗ x of αn with x ≥ m and button(x) > |rn|. The induction breaks into cases

according as αn is or is not a transition node. At the first suitable transition node, we set up to diagonalize.

Case II.1 (Non-Transition Node)

If αn is not a transition node, let P = {x : αn ∗ x ∈ S}. We choose any x∗ ∈ P and any extension r of rn

which presses button(x∗), and let rn+1 = r and αn+1 = β for any β ∈ S having β(n) = x∗.

Case II.2 (Transition Node)

If αn is a transition node, the induction breaks into four subcases. As previously, the header for each case

gives a shorthand for the sort of transition being discussed. The real work of the construction, making full

use of the triple labeling of TL1 , takes place in subcases 3 and 4. The reason for using 3 labels is that later on

in the construction we will need to use the pigeonhole principle on numbers we obtain from transition nodes

and using 3 labels provides us with more transition nodes along a single branch of the labeled subtree TL1 .

Case II.2.1 (〈∞,∞,∞〉 → 〈a, b,∞〉 or 〈a, b, c〉)

If αn has label 〈∞,∞,∞〉 and every successor of αn has a label in which the symbol ∞ appears at most

once, then we let

P = {x : αn ∗ x ∈ S ∧ ∀j < n (ax, bx > button(αn(j))) ∧ ax, bx > |rn|)},

where ax, bx here denote the first two entries in the label of α ∗ x. We choose any x∗ ∈ P and any extension

r of rn such that, if the label of x∗ is 〈a∗, b∗, c∗〉 with a∗, b∗ ∈ ω and c∗ ∈ ω ∪{∞}, then r presses button(x∗)

and σr(a∗, b∗), (lr(a∗))0, and (lr(b∗))0 are not all equal. Recall the definition of S, whereby we know that
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bx > |rn| for each x ∈ P . Thus for all x ∈ P , lrn does not commit us to any particular limiting color for

bx. This is why we are free to press the button of x∗. Let rn+1 = r and αn+1 = β for any β ∈ S having

β(n) = x∗ with label 〈a∗, b∗, c∗〉. As αn+1 is not a transition node, we now return to Case II.1.

Case II.2.2 (〈a,∞,∞〉 → 〈a, b, c〉)

If αn has label 〈a∗,∞,∞〉 and every successor of αn has a label in which only finite numbers appear, then

we let

P = {x : αn ∗ x ∈ S ∧ ∀j < n (bx, cx > button(αn(j))) ∧ bx, cx > |rn|)},

where bx, cx here denote the second and third entries in the label of α ∗ x. We choose any x∗ ∈ P and any

extension r of rn that presses button(x∗) and is such that, if the label of x∗ is 〈a∗, b∗, c∗〉 with a∗, b∗, c∗ ∈ ω,

then σr(b∗, c∗), (lr(b∗))0, and (lr(c∗))0 are not all equal. Let rn+1 = r and αn+1 = β for any β ∈ S having

β(n) = x∗ with label 〈a∗, b∗, c∗〉. As αn+1 is not a transition node, we now return to Case II.1.

For the following two subcases, an additional consideration is necessary. When we constructed the labeled

subtree TL1 , we fixed the choice of the triple 〈a, b, c〉 by which a terminal node α is labeled to be the lexically

least such triple such that c > b > a ≥ |q| and

ΓH∪(FL⊕FR)(a) ↓= ΓH∪(FL⊕FR)(b) ↓= ΓH∪(FL⊕FR)(c) ↓= 1

for some FL, FR ⊆ ran(α). However, we did not fix the choice of FL and FR, nor did we record any

information about such a choice. Now, however, we need to observe some information about the choice of

FL and FR. Recall that FL and FR represent extensions to the finite approximations of the left and right

columns, respectively, of a p-homogeneous set. Per the definition of a p-homogeneous set, if two numbers

x, y ∈ ω are in the same column of a p-homogeneous set, then the color of the set {x, y} can be either 0 or

1 without consequence. This is in contrast to the definition of a homogeneous set, and it is this difference

that will give us the freedom to diagonlize against a (strong computable) reduction of SRT2
2 to SPT2

2. To

that end, we make the following definition, which is intended to formalize the idea that for purposes of the

p-homogeneity of a set we are building with respect to a coloring we are building, we can arrange that the

color assigned to {x, y} does not matter.
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Definition 3.6. Let α be a node in the labeled subtree and let x, y ∈ ran(α). If α is terminal, we say that

x and y can be placed in the same column and that Φf (x, y) is free if α has label 〈a, b, c〉 and there are sets

FL, FR ⊆ ran(α) satisfying the labeling definition such that one of the following is true:

• x ∈ FL and y ∈ FL;

• x ∈ FR and y ∈ FR;

• x /∈ FL ∪ FR or y /∈ FL ∪ FR.

If α is not terminal, we say that x and y can be placed in the same column and that Φf (x, y) is free if there

are infinitely many terminal nodes extending α and satisfying the above conditions.

Case II.2.3 (〈a,∞,∞〉 → 〈a, b,∞〉)

If αn has label 〈a∗,∞,∞〉 and successor of αn has a label in which the symbol∞ appears exactly once, then

we let

P = {y : αn ∗ y ∈ S ∧ ∀j < n (by > button(αn(j))) ∧ by > |rn|)},

where by here denotes the second entry in the label of αn ∗ y. Whether there is much work to be done in

this case depends on whether the first node to have label 〈a∗,∞,∞〉 was or was not the root node of TL1 .

Formally, suppose k is the least index such that αk has a label in which the symbol∞ appears exactly twice.

Then there are two cases.

Case II.2.3.1 (αk = α0 = ∅)

If, on the one hand, αk = α0 = ∅, then we choose any y∗ ∈ P and any extension r of rn which presses

button(y∗) and is such that, if the label of y∗ is 〈a∗, b∗,∞〉, then σr(a∗, b∗), (lr(a∗))0, and (lr(b∗))0 are not

all equal. In this case let rn+1 = r and αn+1 = β for any β ∈ S having β(n) = x∗ with label 〈a∗, b∗,∞〉.

Case II.2.3.2 (k > 0 and αk 6= ∅)

If, on the other hand, k > 0 and αk 6= ∅, then there is more work to do. Suppose that αk(k − 1) = x∗. Let

P ′ ⊆ P contain precisely the elements y of P which can be placed in the same column as x∗. This is where

we begin to use the triple labels of TL1 . Either P ′ 6= ∅ and we diagonalize in this case, or else P ′ = ∅ and we
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wait until the next case to diagonalize, but we are guaranteed to succeed when we attempt in the next case

to find a pair of elements which can be placed in the same column.

The important idea here is intuitively as follows. Either we may choose y∗ from P that can be placed in

the same column of the p-homogeneous set as x∗, or else x∗ and y∗ cannot be placed in the same column

and then a z∗ may be chosen at the next transition node that can be placed in the same column as one of

x∗ or y∗. In either case, the color that Φf assigns to the pair of numbers which can be placed in the same

column can safely be changed without disturbing the construction.

P ′ 6= ∅

x∗
y∗

or

P ′ = ∅

y∗

x∗

y∗
x∗
z∗

y∗
x∗

z∗

Φf (x∗, y∗) free Φf (x∗, y∗) not free
Φf (y∗, z∗) free

Φf (x∗, z∗) free

Figure 2. Pairs of adjacent rectangles represent columns of the (finite approximation of the) p-homogeneous
set under construction. If P ′ 6= ∅, then Φf (x∗, y∗) is free. Otherwise it must be the case that
either Φf (x∗, z∗) is free or that Φf (y∗, z∗) is free.

If P ′ is nonempty, then we choose any y∗ ∈ P ′ with label 〈a∗, b∗,∞〉 and a condition r which extends

rn except possibly having (lr(a∗))1 6= (lqn(a∗))1 if the latter is defined; and we choose y∗ and r such that r

presses button(y∗) and σr(a∗, b∗), (lr(a∗))0, and (lr(b∗))0 are not all equal; and we let rn+1 = r and αn+1 = β

for any β ∈ S having β(n) = y∗ with label 〈a∗, b∗,∞〉. Finally, if γ is any extension of αn+1 in TL1 such that

x∗ and y∗ cannot be placed in the same column, then we delete from TL1 γ and all of its extensions. As αn+1

is not a transition node, we now return to Case II.1.

Such y∗ and r exist in this case for the following reason. Observe that for any y∗ ∈ P ′ with label

〈a∗, b∗,∞〉, a∗ 6= button(αn(j)) for j 6= k − 1. Since b∗ > |rn|, σrn(a∗, b∗) is not yet defined, so we may

choose r extending rn with σr(a∗, b∗) 6= (lr(a∗))0—unless lrn(a∗) is defined and (lrn(a∗))1 ≤ b∗. In this latter

case we let (lr(a∗))0 = (lrn(a∗))0 but choose (lr(a∗))1 > b∗. Note that in this case r is not an extension of

rn but that r does extend ps. Hereafter we extend r rather than rn.

To conclude the argument in this case, it remains to observe that changing the stabilization point of a∗ as

above does not injure our construction in any way. For the colors of pairs of elements of αn are forced by facts
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about σqn alone. Furthermore, the fact that Φf (u, y∗) = 1 for all u ∈ ran(αn), u 6= x∗ with parity unequal

to that of y∗ is settled by facts about the stabilization points of such numbers u, and these are unaffected by

altering (lrn(a∗))1 since a∗ is not the button of any such u. This means that choosing (lr(a∗))1 6= (lrn(a∗))1

can at most interfere with the stabilization point of x∗ and keep us from forcing Φf (x∗, y∗) = 1. But note

that this does not matter for purposes of the p-homogeneous set we are building, since x∗ and y∗ will not

appear in different columns of the p-homogeneous set we are building and so their mutual color is irrelevant.

If on the other hand P ′ is empty, then we proceed as in the non-transition case and will diagonalize in

Case II.2.4 instead.

Case II.2.4 (〈a, b,∞〉 → 〈a, b, c〉)

If αn has label 〈a∗, b∗,∞〉 and every successor of αn has a label in which only finite numbers occur, and if

we failed to diagonalize at an earlier node in the previous case, then we proceed as follows; otherwise we

proceed as in the non-transition case. Let

P = {z : αn ∗ z ∈ S ∧ ∀j < n (cz > button(αn(j))) ∧ cz > |rn|)},

where cz here denotes the third entry in the label of αn ∗ z. Suppose k is the least index such that αk has a

label in which the symbol ∞ appears exactly twice and that l > k is the least index such that αl has a label

in which the symbol ∞ appears exactly once. Such k and l exist by our assumption that we tried and failed

to diagonalize in Case II.2.3.2 above. As described in that case, we now capitalize on the fact that we have

already seen two transition nodes along the branch of TL1 that we are building and thus are in a position to

apply the pigeonhole principle. We proceed as follows.

Suppose that αk(k − 1) = x∗ and that αl(l − 1) = y∗. Let P ′ ⊆ P contain precisely those elements of

P which share a column with x∗ and P ′′ ⊆ P contain precisely those elements of P which can be placed in

the same column as y∗. At least one of P ′, P ′′ must be nonempty; without loss of generality we assume that

P ′′ is nonempty. Then we choose z∗ ∈ P ′′ with label 〈a∗, b∗, c∗〉 and a condition r which extends rn except

possibly having (lr(b∗))1 6= (lqn(b∗))1 if the latter is defined; and we choose z∗ and r such that σr(b∗, c∗),

(lr(b∗))0, and (lr(c∗))0 are not all equal and r presses button(z∗). We let rn+1 = r and αn+1 = β for any

β ∈ S having β(n) = z∗ with label 〈a∗, b∗, c∗〉. Such z∗ and r exist by the same reasoning given in the
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previous case. Finally, if γ is any extension of αn+1 in TL1 such that y∗ and z∗ cannot be placed in the same

column, then we delete from TL1 γ and all of its extensions. As αn+1 is not a transition node, we now return

to Case II.1.

Completing the Construction

We complete stage s as follows. If added some set P to Y , or if we defined Is+1 to be the range of an

infinite path through T0 or T1, we are done. For if we added some set P to Y , then there will be an

(f ⊕ P )-computable set p-homogeneous for Φf , but by Lemma 2.10 there will be no (f ⊕ P )-computable

set homogeneous for f . And if we defined Is+1 to be the range of an infinite path through T0 or T1—say

through T0—then from the definition of that tree ΓHΦ
0 does does not define an infinite set, let alone one

homogeneous for f .

Otherwise, we succeeded either in defining αn+1 for each non-terminal αn in the sequence of nodes

through TL0 or else in defining αn+1 for each non-terminal αn in the sequence of nodes through TL1 ; say we

succeeded in defining the sequence of nodes in TL0 . That tree was in this case well-founded, so for some

n, αn was terminal. Then from the definition of the tree, there are some FL, FR ⊆ ran(αn) such that

ΓHΦ
0,s∪FL⊕FR(a) ↓= ΓHΦ

0,s∪FL⊕FR(b) ↓= 1 for some unequal a, b ≥ |ps|, say with use u. Let ps+1 = qn,

HΦ
0,s+1 = HΦ

0,s ∪ FL ⊕ FR, and Is+1 = {x ∈ Is : x > u}.
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4 Separating SPT2
2 and SIPT2

2

In this section we will prove the following theorem, which has the Second Main Theorem as its corollary.

Theorem 4.1. There exists a stable 2-coloring of pairs f : [ω]2 → 2 and a family Y of infinite sets such

that no (f ⊕ P )-computable set is p-homogeneous for f for any P ∈ Y , and every stable 2-coloring of pairs

f ′ : [ω]2 → 2 computable from f has either an (f ⊕ P )-computable increasing p-homogeneous set for some

P ∈ Y , or if not then some increasing p-homogeneous set which does not compute a set p-homogeneous for

f .

Before proving Theorem 4.1, we observe how the Second Main Theorem is a direct consequence. The

explanation is the same as that given in the for the deduction of the First Main Theorem from Theorem 3.1.

Proof of Theorem 3.1. We build

• a sequence of C-conditions p0 ≥ p1 ≥ p2 ≥ · · · with lims |ps| =∞;

• sequences of finite sets (initial segments of increasing p-homogeneous sets) HΦ
j,0 ⊆ HΦ

j,1 ⊆ HΦ
j,2 ⊆ · · ·

for each Turing functional Φ and each j < 2;

• a sequence of infinite sets (reservoirs) I0 ⊇ I1 ⊇ I2 ⊇ · · · with HΦ
j,s < Is for each Φ, j, s;

• a sequence of finite families Y0 ⊆ Y1 ⊆ Y2 ⊆ · · · of infinite subsets of ω;

and we define f =
⋃
s σ

ps , HΦ
j =

⋃
sH

Φ
j,s for each j < 2, and Y =

⋃
s Ys. The construction will ensure the

following requirements, for all i ∈ ω and Turing functionals Φ,Γ,∆:

Pi : the sequence p0 ≥ p1 ≥ p2 ≥ · · · is 3-generic relative to each P ∈ Yi;

QΦ,i : if Φf is a stable 2-coloring of pairs, it either has an (f ⊕ P )-computable

increasing p-homogeneous set for some P ∈ Y or else both HΦ
0 and HΦ

1

are infinite in both columns;

RΦ
Γ,∆ : if Φf is a stable 2-coloring of pairs, it either has an (f ⊕ P )-computable

increasing p-homogeneous set for some P ∈ Y ; or else if ΓHΦ
0 defines an

infinite set then this set is not p-homogeneous for f ; or else if ∆HΦ
1

defines an infinite set then this set is not p-homogeneous for f .
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By way of explaining the Q and R requirements, note that by Lemma 2.10, if there is any sequence

satisfying the P requirements and such that for some P ∈ Y f ⊕P computes a set increasing p-homogeneous

for Φf , there will then be a set which is increasing p-homogeneous for Φf but which computes no set

p-homogeneous for f .

4.1 Outline of the Construction

Most of the remarks we made in subsection 3.1 apply mutatis mutandis, and we refer the reader to that

subsection for additional details. In brief, we will construct an instance f of SPT2
2 and—via tree labeling—for

every instance Φf of SIPT2
2 computed from f a solution H to Φf which does not compute any solution to f .

As before, the work of finding the correct extensions for successive finite approximations to the increas-

ing p-homogeneous sets (which appears in the proof as the work to satisfy the R requirements) will be

accomplished using tree labeling constructions. We will attempt to find such extensions for the increasing

p-homogeneous set of color 0 by searching through a labeled subtree with 2 labels, and if this fails we will

succeed in finding such an extension for the increasing p-homogeneous set of color 1 by searching through a

labeled subtree with 3 labels. It is here that we leverage the combinatorial differences between p-homogeneous

and increasing p-homogeneous sets. As in the previous proof, we will take leverage these differences by a

pigeonhole argument.

Once again, cases beget subcases and subsubcases. There will be a Case I for when the first tree labeling

construction succeeds and a Case II for when the first tree labeling construction fails and another is required.

Then, under Case I or Case II, there are different concerns depending on whether we are, at a given step of

the search through the labeled subtree, looking at a transition node or a non-transition node, as defined in

Definition 2.7. The work to be done at non-transition nodes is straightforward, while at transition nodes the

work divides further into cases depending on precisely which kind of transition node occurs. In one of these

transition node cases, there will be an additional division into subcases based on some technical details of

the tree labeling scheme.

While the proof in this section will be more involved than the proof of the First Main Theorem, some

parts of the construction remain unchanged. For cases where the construction is identical, we will merely cite

the proof of the First Main Theorem. Throughout, we will abide once more by the notational conventions

laid out in Remark 3.2.
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4.2 Construction

Devote infinitely many stages s ∈ ω to each requirement. Let p0 be any condition with |ps| = 0. For each Φ

let HΦ
0,0 = HΦ

1,0 = ∅, and let I0 = ω and Y0 = ∅. At stage s+ 1 assume by way of induction that we have ps,

HΦ
j,s for j < 2 and all Φ, Is, and Ys and assume that if HΦ

j,s is nonempty for some j and Φ, then ps forces

that Φf is a stable coloring of pairs and that for x < y, Φf (x, y) = j whenever 2x, 2y + 1 ∈ HΦ
j,s or when

y ∈ Is and 2x ∈ HΦ
j,s. At the end of a stage any of ps+1, HΦ

j,s+1, Is+1, or Ys+1 not yet defined should be

taken to be identical to ps, HΦ
j,s, Is, or Ys, respectively.

P requirements

Suppose s is dedicated to requirement Pi for some i < s and that it is the 〈n,m〉th such stage. If n > |Yi|

do nothing. Otherwise, let P be the nth member of the family Yi in some fixed enumeration and let W be

the mth Σ0
3(P ) set in some fixed enumeration. If ps has an extension q in W , fix q and let ps+1 = q, so that

p0 ≥ p1 ≥ · · · ≥ ps ≥ ps+1 ≥ · · · meets W . Otherwise, do nothing, and p0 ≥ p1 ≥ · · · ≥ ps ≥ ps+1 ≥ · · ·

avoids W .

Q requirements

Suppose s is dedicated to QΦ,i. Without loss of generality we assume that ps decides whether or not Φf is

a stable 2-coloring of pairs. If ps forces that Φf is not such a coloring, do nothing. Otherwise, we consider

two cases.

• If for some j < 2 and k ∈ ω there is no extension of ps which forces that limu Φf (x, u) = j for

some x ≥ k in Is, then P = {x ∈ Is : x ≥ k} is limit homogeneous for Φf with color 1 − j, and so

(f ⊕P ) computes an increasing p-homogeneous set for Φf . We set Ys+1 = Ys ∪ {P}. This satisfies the

requirement.

• If no such j, k exist, then there are numbers x00, x01, x10, x11 ∈ Is with x00 < x01 and x10 < x11

and an extension of ps forcing that HΦ
j,s ∪ {2xj0, 2xj1 + 1} is finite increasing p-homogeneous for

Φf and limu Φf (xji, u) = j for each i, j < 2. In this case let ps+1 be such an extension of ps, let

HΦ
j,s+1 = HΦ

j,s ∪ {2xj0, 2xj1 + 1}, and let Is+1 = {x : m < x ∈ Is} where m is greater than the
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stabilization points under Φf of every element of HΦ
0,s+1 ∪ HΦ

1,s+1. Observe that both columns have

been extended by one element.

R requirements

Suppose s is dedicated to RΦ
Γ,∆ and assume that ps forces that Φf is a stable coloring of pairs. The goal

of this requirement is to extend by some finite set either the initial segment of HΦ
0 (Case I) or the initial

segment of HΦ
1 (Case II) that we have constructed so far, subject to the following condition: if we extend

HΦ
0 , then Γ does not compute a p-homogeneous set for f from any further extension of HΦ

0 ; and if on the

other hand we extend HΦ
1 , then ∆ does not compute a p-homogeneous set for f from any further extension

of HΦ
1 . When we have so extended one of HΦ

0 , H
Φ
1 , we will say that we have successfully diagonalized against

such computations.

We intend to accomplish this diagonalization in the following way. There will be two numbers, say a and

b, and two finite sets FL and FR, all arising from a tree labeling construction, about which we know either

that

ΓH
Φ
0 ∪(FL⊕FR)(a) ↓= ΓH

Φ
0 ∪(FL⊕FR)(b) ↓= 1

or else that

∆HΦ
1 ∪(FL⊕FR)(a) ↓= ∆HΦ

1 ∪(FL⊕FR)(b) ↓= 1.

Let us suppose we know the first. In other words, we know that if we extend HΦ
0 by FL ⊕ FR, then the

set computed from HΦ
0 ∪ (FL ⊕ FR) by Γ will contain a and b. Thus to diagonalize—i.e. to ensure that

the set so computed is not homogeneous for f—we will choose an extension q of the condition ps such that

σq(a, b), (lq(a))0, and (lq(b))0 are not all equal. This will guarantee that no set containing both a and b is

homogeneous for the coloring eventually obtained by extending σq. The tension of the proof arises from the

fact that, while diagonalizing in this way, we also need q to force that elements of FL and FR have the right

limits under Φf so that HΦ
0 ∪ (FL ⊕ FR) can in fact be extended to a p-homogeneous set.

The means by which we accomplish such a diagonalization here will be slightly more involved than in

the previous section. This is because we are trying to leverage the combinatorial differences between a

p-homogeneous set and an increasing p-homogeneous set rather than between a p-homogeneous set and a

homogeneous one. Because both of the kinds of homogeneous set under consideration have two columns and
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the distinction has to do with the order of the elements in those columns, it will be important to keep track of

the way we place numbers into each column during the construction. So in the present proof there will again

be two numbers, say a and b, and two finite sets FL and FR, all arising from a tree labeling construction,

about which we know either that

ΓH
Φ
0 ∪(FL⊕FR)(2a+ 1) ↓= ΓH

Φ
0 ∪(FL⊕FR)(2b) ↓= 1

or else that

∆HΦ
1 ∪(FL⊕FR)(2a+ 1) ↓= ∆HΦ

1 ∪(FL⊕FR)(2b) ↓= 1.

Let us suppose we know the first. In other words, we know that if we extend HΦ
0 by FL ⊕ FR, then the set

computed from HΦ
0 ∪ (FL ⊕ FR) by Γ will contain 2a + 1 and 2b. When we view the set so computed as

having two columns (i.e. as being the join of two sets), this means that a appears in the right-hand column

and b appears in the left-hand column. Thus to ensure that the set so computed is not p-homogeneous for

f , we will choose as before an extension q of the condition ps such that σq(a, b), (lq(a))0, and (lq(b))0 are

not all equal. This will guarantee that no set containing both a and b is p-homogeneous for the coloring

eventually obtained by extending σq.

Case I (Extending HΦ
0 )

For this proof we need again to modify slightly the definition of tree labeling with two labels. We now say

that a nonempty string α ∈ T (k,Γ, H, I) if α ∈ I<ω is increasing and there are no finite FL, FR ⊆ ran(α#)

and no b > a ≥ k such that

ΓH∪(FL⊕FR)(2a+ 1) ↓= ΓH∪(FL⊕FR)(2b) ↓= 1.

With this modification of the tree labeling definition in hand, we now as before let T0 = T (|ps|,Γ, HΦ
0,s, Is).

If T0 is not well-founded then let Is+1 be the range of an infinite path through T0. Observe that in this case

the requirement is satisfied. If T0 is well-founded, then let TL0 be the labeled subtree of T0.
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We now try to define two sequences, conditions

ps ≥ q0 ≥ q1 ≥ q2 ≥ · · ·

and nodes of TL0
∅ = α0 � α1 � α2 � · · ·

where for all j ≥ 0, αj+1 is a successor of αj and for all j ≥ 0 the condition qj forces that

lim
u

Φf (x, u) = 0

for all x ∈ ran(αj). The remainder of the argument for this case is exactly the same as that for Case I in

Theorem 3.1.

Case II (Extending HΦ
1 )

We proceed as in the previous section. Recall that this is the case we are in after having already attempted

Case I, but having failed in Case I.2.2. Thus we begin the present case with information that will allow us to

perform a tree labeling construction with 3 labels with no possibility of failure. Recall that we have assumed

that ps (and hence qn) forces that Φf is a stable 2-coloring of pairs,and recall that Case I.2.2 failed because

we could not find a tuple 〈x∗, a∗, b∗〉 ∈ P and an extension q of qn which forces that limu Φf (x∗, u) = 0 and

is such that σq(a∗, b∗), (lq(a∗))0, and (lq(b∗))0 are not all equal. This means, given the definitions above of

Q and the revised reservoir Is, that for any x ∈ Is and any extension q of qn such that σq(a∗, b∗), (lq(a∗))0,

and (lq(b∗))0 are not all equal q forces that limu Φf (x∗, u) = 1. As before, we will make use of Definition 3.3

and Definition 3.4 and make the notational adjustment of Remark 3.5.

Here again we must modify the tree labeling method, varying tree labeling with three labels. The

definition of T (k,Γ, H, I) is for this case changed to the following. ∅ ∈ T (k,Γ, H, I) and for a nonempty

string α, α ∈ T (k,Γ, H, I) if α ∈ I<ω is increasing and there are no finite FL, FR ⊆ ran(α#) and no

c > b > a ≥ k such that

ΓH∪(FL⊕FR)(2a+ 1) ↓= ΓH∪(FL⊕FR)(2b) ↓= ΓH∪(FL⊕FR)(2c+ 1) ↓= 1.
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The method for labeling the nodes of T (k,Γ, H, I) extends the method from tree labeling with two labels in

the natural way, as does the method for selecting the nodes of the labeled subtree TL(k,Γ, H, I). Remark 2.3

applies mutatis mutandis.

Now we begin a new tree labeling construction starting where we left off when Case I.2.2 failed. Thus we

have the forcing condition (formerly designated qn; recall Remark 3.5) q ≤ ps and the revised reservoir Is.

Let T1 = T (|q|,∆, HΦ
1,s, Is). If T1 is not well founded then let Is+1 be the range of an infinite path through

T1. Observe that in this case the requirement is satisfied. If T1 is well founded, let TL1 be the labeled subtree

of T1.

We now try to define two sequences, conditions

q ≥ r0 ≥ r1 ≥ r2 ≥ · · ·

and nodes of TL1
∅ = α0 � α1 � α2 � · · ·

where for all j ≥ 0, αj+1 is a successor of αj and for all j ≥ 0 the condition rj forces that

lim
u

Φf (x, u) = 1

for all x ∈ ran(αj). We begin the definition of these sequences as follows.

• If ∅ = α0 has label 〈a, b, c〉 with a, b, c ∈ ω, let r0 be any extension of q having σr0(a, b), (lr0(a))0, and

(lr0(b))0 not all equal.

• If ∅ = α0 has label 〈a, b,∞〉 with a, b ∈ ω, let r0 be any extension of q having σr0(a, b), (lr0(a))0, and

(lr0(b))0 not all equal.

• Otherwise, let q0 = q.

We then proceed by induction. Suppose we have defined rn and αn and that the latter is not terminal

in TL1 . Recall that rn forces that there is some m ∈ ω such that Φf (x, y) = 1 for x ∈ ran(αn) and y ≥ m.

Let S be the set of all successors αn ∗ x of αn with x ≥ m and button(x) > |rn|. The induction breaks

into cases according as αn is or is not a transition node. At the first suitable transition node, we set up
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to diagonalize. Hereafter the construction is exactly the same as that of Theorem 3.1 up until Case II.2.3,

where the diagonalization strategy changes to reflect the different combinatorics of the present theorem.

We therefore refer the reader to the previous section and restart this one at Case II.2.3 below. Before we

do so, it is important that we revise Definition 3.6 to reflect the fact that we are building an increasing

p-homogeneous set.

Definition 4.2 (Definition 3.6 Revised for Increasing p-Homogeneous Sets). Let α be a node in the labeled

subtree and let x, y ∈ ran(α) with x < y. If α is terminal, we say that Φf (x, y) is free if α has label 〈a, b, c〉

and there are sets FL, FR ⊆ ran(α) satisfying the labeling definition such that one of the following is true:

• x ∈ FL and y ∈ FL;

• x ∈ FR;

• x /∈ FL ∪ FR or y /∈ FL ∪ FR.

If α is not terminal, we say that Φf (x, y) is free if there are infinitely many terminal nodes extending α and

satisfying the above conditions.

As before, this definition is intended to formalize the idea that for purposes of the increasing p-homogeneity

of a set we are building with respect to a coloring we are building, we can arrange that the color assigned to

{x, y} does not matter.

Case II.2.3 (〈a,∞,∞〉 → 〈a, b,∞〉)

If αn has label 〈a∗,∞,∞〉 and successor of αn has a label in which the symbol∞ appears exactly once, then

we let

P = {y : αn ∗ y ∈ S ∧ ∀j < n (by > button(αn(j))) ∧ by > |rn|)},

where by here denotes the second entry in the label of αn ∗ y. Whether there is much work to be done in

this case depends on whether the first node to have label 〈a∗,∞,∞〉 was or was not the root node of TL1 .

Formally, suppose k is the least index such that αk has a label in which the symbol∞ appears exactly twice.

Then there are two cases.
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Case II.2.3.1 (αk = α0 = ∅)

If, on the one hand, αk = α0 = ∅, then we choose any y∗ ∈ P and any extension r of rn which presses

button(y∗) and is such that, if the label of y∗ is 〈a∗, b∗,∞〉, then σr(a∗, b∗), (lr(a∗))0, and (lr(b∗))0 are not

all equal. In this case let rn+1 = r and αn+1 = β for any β ∈ S having β(n) = x∗ with label 〈a∗, b∗,∞〉.

Case II.2.3.2 (k > 0 and αk 6= ∅)

If, on the other hand, k > 0 and αk 6= ∅, then there is more work to do. Suppose that αk(k − 1) = x∗. Let

P ′ ⊆ P contain precisely the elements y of P such that Φf (x∗, y) is free. This is where we begin to use the

triple labels of TL1 . Either P ′ 6= ∅ and we diagonalize in this case, or else P ′ = ∅ and we wait until the next

case to diagonalize, but we are guaranteed to succeed when we attempt in the next case to find a pair of

elements for which Φf is free.

The important idea here is intuitively as follows. Either we may choose y∗ from P so that Φf (x∗, y∗)

is free, or else x∗ < y∗ must be in the only configuration such that Φf (x∗, y∗) is not free; that is, x∗ must

inhabit the left column and y∗ the right column. But then since x∗ and y∗ are in different columns, it is

guaranteed that at the next transition node we encounter as we build a branch through TL1 we may choose

a z∗ such that either Φf (x∗, z∗) is free or Φf (y∗, z∗) is free.

P ′ 6= ∅︷ ︸︸ ︷

Φf (x∗, y∗) free

y∗

x∗
y∗

x∗

or

P ′ = ∅

Φf (x∗, y∗) not free

x∗
y∗

x∗
y∗

z∗

x∗
y∗
z∗ Φf (y∗, z∗) free

Φf (y∗, z∗) free

Figure 3. Pairs of adjacent rectangles represent columns of the (finite approximation of the) increasing p-
homogeneous set under construction. If P ′ 6= ∅, then Φf (x∗, y∗) is free. Otherwise it must be the
case that either Φf (x∗, z∗) is free or that Φf (y∗, z∗) is free.

If P ′ is nonempty, then we choose any y∗ ∈ P ′ with label 〈a∗, b∗,∞〉 and a condition r which extends

rn except possibly having (lr(a∗))1 6= (lrn(a∗))1 if the latter is defined; and we choose y∗ and r such that r

presses button(y∗) and σr(a∗, b∗), (lr(a∗))0, and (lr(b∗))0 are not all equal; and we let rn+1 = r and αn+1 = β
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for any β ∈ S having β(n) = y∗ with label 〈a∗, b∗,∞〉. Finally, if γ is any extension of αn+1 in TL1 such that

Φf (x∗, y∗) is not free, then we delete from TL1 γ and all of its extensions. As αn+1 is not a transition node,

we now return to Case II.1.

If on the other hand P ′ is empty, then we proceed as in the non-transition case and will diagonalize in

Case II.2.4 instead.

Case II.2.4 (〈a, b,∞〉 → 〈a, b, c〉)

If αn has label 〈a∗, b∗,∞〉 and every successor of αn has a label in which only finite numbers occur, and if

we failed to diagonalize at an earlier node in the previous case, then we proceed as follows; otherwise we

proceed as in the non-transition case. Let

P = {z : αn ∗ z ∈ S ∧ ∀j < n (cz > button(αn(j))) ∧ cz > |rn|)},

where cz here denotes the third entry in the label of αn ∗ z. Suppose k is the least index such that αk has a

label in which the symbol ∞ appears exactly twice and that l > k is the least index such that αl has a label

in which the symbol ∞ appears exactly once. Such k and l exist by our assumption that we tried and failed

to diagonalize in Case II.2.3.2 above. As described in that case, we now capitalize on the fact that we have

already seen two transition nodes along the branch of TL1 that we are building and thus are in a position to

apply the pigeonhole principle. We proceed as follows.

Suppose that αk(k − 1) = x∗ and that αl(l − 1) = y∗. Let P ′ ⊆ P contain precisely those elements

z ∈ P such that Φf (x∗, z) is free and P ′′ ⊆ P contain precisely those elements z ∈ P such that Φf (y∗, z) is

free. At least one of P ′, P ′′ must be nonempty; without loss of generality we assume that P ′′ is nonempty.

Then we choose z∗ ∈ P ′′ with label 〈a∗, b∗, c∗〉 and a condition r which extends rn except possibly having

(lr(b∗))1 6= (lrn(b∗))1 if the latter is defined; and we choose z∗ and r such that σr(b∗, c∗), (lr(b∗))0, and

(lr(c∗))0 are not all equal and r presses button(z∗). We let rn+1 = r and αn+1 = β for any β ∈ S having

β(n) = z∗ with label 〈a∗, b∗, c∗〉. Such z∗ and r exist by the same reasoning given in the proof in the previous

section. Finally, if γ is any non-terminal extension of αn+1 in TL1 such that Φf (y∗, z∗) is not free, then we

delete from TL1 γ and all of its extensions. As αn+1 is not a transition node, we now return to Case II.1.

40



Completing the Construction

We complete stage s as follows. If added some set P to Y , or if we defined Is+1 to be the range of an infinite

path through T0 or T1, we are done. Otherwise, we succeeded either in defining αn+1 for each non-terminal αn

in the sequence of nodes through TL0 or else in defining αn+1 for each non-terminal αn in the sequence of nodes

through TL1 ; say we succeeded in defining the sequence of nodes in TL0 . This tree was in this case well-founded,

so for some n, αn was terminal. Then from the definition of the tree, there are some FL, FR ⊆ ran(αn)

such that ΓHΦ
0,s∪(FL⊕FR)(2a + 1) ↓= ΓHΦ

0,s∪(FL⊕FR)(2b) ↓= ΓHΦ
0,s∪(FL⊕FR)(2c + 1) ↓= 1 for some unequal

a, b, c ≥ |ps|, say with use u. Let ps+1 = rn, HΦ
0,s+1 = HΦ

0,s ∪ FL ⊕ FR, and Is+1 = {x ∈ Is : x > u}.
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5 Summary of Results

We selected a particular “menagerie” within the reverse mathematics zoo, consisting of the four stable

relatives of Ramsey’s theorem for 2-colorings of pairs SRT2
2, SPT2

2, SIPT2
2, and D2

2. We know [3] that these

four principles are all logically equivalent over RCA0, but the finer structure of the menagerie under strong

reducibility was largely unknown. It follows from a lemma of Cholak, Jockusch, and Slaman [2] that all four

theorems are computably equivalent, and Dzhafarov [9] proved that SRT2
2 6≤W D2

2 and SRT2
2 6≤sc D2

2. We

set out to determine which of the other possible reductions succeed or fail. While some of the reductions

are trivial, in particular the non-reductions SRT2
2 6≤sc SPT2

2 6≤sc SIPT2
2 are nontrivial and to prove these we

required several elaborations of the tree labeling constructions used in previous work [9, 13].

In summary, we have shown that while D2
2 ≤sW SIPT2

2 ≤sW SPT2
2 ≤sW SRT2

2, SRT2
2 6≤sc SPT2

2 6≤sc

SIPT2
2 6≤sc D2

2. This formalizes our intuitions about the relative complexity of these four principles and

shows that ≤sc is the right level of strong reduction needed to separate these principles. Figure 4 records

the status of all the strong reductions between the principles studied in this paper. In the diagram, we write

Q→ P to mean that problem P reduces to problem Q in the indicated sense.

≤c ≤W ≤sc , ≤sW

SRT2
2 SRT2

2SRT2
2

SPT2
2 SPT2

2SPT2
2

SIPT2
2 SIPT2

2SIPT2
2

D2
2 D2

2D2
2

Figure 4. Complete map of the strong reductions which hold between the four principles. An arrow from P to
Q indicates that Q is reducible in the given sense to P. Arrows are absent where the corresponding
reduction fails.
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